Computational Biomathematics: Hermann J. Eberl
Default header image

Publications

  1. Eberl H, Khelil A, Wilderer P. Construction of Simplified Descriptions of a Sewer System To Characterize Its Hydraulic Behaviour, Proc. 7th Int.Conf. on Urban Storm Drainage, Hannover, 1996
  2. Eberl H, Khelil A, Wilderer P. Multiple Data Parameter Identification for Nonlinear Conceptual Models, Proc. 4th Int.Conf. Systems Analysis and Computing in Water Quality Management, WATERMATEX `97, Quebec City, 1997
  3. Khelil A, Achatz S, Anton H-J, Eberl H, Schaad P, Wilderer P. Online Prediction of Rainfall Inflows into Drainage Systems. Modelling, Calibration, Verification in: Wilderer et al. (eds) Treatment of Solid Waste and Wastewater, BayFORREST Report Series, Nr.6, 1997
  4. Eberl H, Khelil A, Wilderer P. Multiple Data Parameter Identification for Nonlinear Conceptual Models, Wat. Sci. & Tech., 36(5):61-68, 1997
  5. HJ Eberl. Nichtlineare hydrologische Konzeptmodelle für den Kanalabfluß und ihre Kalibrierung, Berichte aus Wassergüte- und Abfallwirtschaft Nr.139, TUM, 171 pages, 1998
  6. Khelil A, Achatz S, Anton H-J, Eberl H, Wilderer P, Schaad P. On-line Vorhersage der Zuflussbelastung eines Entwässerungssystems – Modellierung, Kalibrierung, Verifizierung, Korresp. Abwasser 45(8), 1998
  7. Morgenroth E, Eberl H, van Loosdrecht M. Evaluating 3d and 1d mathematical models for mass transport in heterogenous biofilms, Wat. Sci. & Tech, 41(4/5):347-356, 2000
  8. Eberl HJ. Power series approach to holistic sewer system modelling, ASCE J. of Hydraulic Eng., 126(3):179-184, 2000
  9. Eberl HJ, Picioreanu C, van Loosdrecht MCM. Modeling Geometrical Heterogeneity in Biofilms,  in Andrew Pollard et al (ed), High Performance Computing Systems and Applications, Kluwer Acad. Publishers, 2000
  10. Eberl HJ. Two Degrees of Freedom in Sample-Edgeworth-Pareto Parameter Identification for Nonlinear Lumped Urban Storm Drainage Models, Proc.  5th Int. Symposium and Systems Analysis and Computing in Water Quality Management, WATERMATEX 2000, Gent, 2000
  11. Eberl HJ, Picioreanu C, Heijnen JJ, van Loosdrecht MCM. A Three-Dimensional Numerical Study on the Correlation of Spatial Structure, Hydrodynamic Conditions, and Mass Transfer and Conversion in Biofilms, Chem. Eng. Sci, 55:6209-6222, 2000
  12. Eberl HJ, Parker DF, van Loosdrecht MCM. A new Deterministic Spatio-Temporal Continuum Model For Biofilm Development, J.of Theor. Medicine, 3(3):161-175, 2001
  13. MA Efendiev, HJ Eberl, SV Zelik. Existence and Longtime Behavior of Solutions of a Nonlinear Reaction-Diffusion System Arising in the Modeling of Biofilms, RIMS Kyoto Kokyuroko, Vol. 1258, 2002
  14. MCM van Loosdrecht, JJ Heijnen, H Eberl, J Kreft, C Picioreanu. Mathematical Modelling of Biofilm Structures, Antonie van Leeuwenhoek – Int. J. of General and Molec. Microbiology, 81(1):245-256, 2002
  15. Eberl HJ, Efendiev MA. A Transient Density Dependent Diffusion-Reaction Model for the Limitation of Antibiotic Penetration in Biofilms. Electr. J. Diff Equ. CS10:123-142, 2003
  16. Eberl HJ. What do biofilm models, mechanical ducks, and artificial life have in common?, in S. Wuertz, P. Wilderer & P. Bishop (eds.), Biofilms in Wastewater Treatment: An Interdisciplinary Approach, IWA Publishing, 2003
  17. Eberl HJ, Efendiev MA, Modeling, analysis, and simulation of biofilm formation and decay, PAMM 2(1):430-431, 2003
  18. Eberl HJ. Simulation of Chemical Reaction Fronts In Anaerobic Digestion Of Solid Waste, LNCS 2667:503-512, 2003
  19. Morgenroth E, Eberl HJ, Van Loosdrecht MCM, Noguera DR, Picioreanu C, Rittmann BE, Schwarz AO, Wanner O. Results from the single species benchmark problem (BM1),  Wat. Sci.& Tech., 49(11/12):145-154, 2004
  20. Eberl HJ, Van Loosdrecht MCM, Morgenroth E, Noguera DR, Perez J, Picioreanu C, Rittmann BE, Schwarz A, Wanner O. Modelling a spatially heterogeneous biofilm and the bulk fluid- selected results from the fluid flow benchmark problem (BM2), Wat. Sci. & Tech., 49(11/12):155-162, 2004
  21. Rittmann BE, Schwarz AO, Eberl HJ, Morgenroth E, Perez J, Van Loosdrecht MCM, Wanner O. Results from the multi-species benchmark problem using one-dimensional models (BM3), Wat.Sci. & Tech., 49(11/12):163-168, 2004
  22. Nguyen VT, Eberl H. A Complete CFD Tool For Flood Forecasting, Proc. CFD Soc. of Canada, 2004
  23. Eberl HJ. A deterministic continuum model for the formation of EPS in heterogeneous biofilm architectures,  Proc. Biofilms 2004, Las Vegas, 2004
  24. Nguyen VT, Morgenroth E, Eberl HJ, A mesoscale model for hydrodynamics in biofilms that takes microscopic flow effects into account, Wat. Sci. & Tech., 52(7):167-172, 2005
  25. Sudarsan R, Milferstedt K, Morgenroth E, Eberl HJ. Quantification of detachment forces on rigid biofiln colonies in a roto torque reactor using computational fluid dynamics tools, Wat. Sci. & Tech. 52(7):149-154. 2005
  26. Eberl HJ. Spatio-Temporal Effects In Anaerobic Digestion Of Solid Waste, Nonlinear Analysis, 63(5):1497-1505, 2005
  27. Duvnjak A, Eberl HJ, Time-discretization of a Degenerated Reaction-Diffusion Equation Arising In Biofilm Modeling, Electr. Trans. Num. Analysis, 23, 2006
  28. Khassehkhan H, Eberl HJ, Interface tracking for a non-linear degenerated diffusion-reaction equation describing biofilm formation, Dyn. Cont. Disc. Imp. Sys. A, 13SA:131-144, 2006
  29. Wanner O. Eberl H, Morgenroth E, Noguera D, Picioreanu C, Rittmann B, van Loosdrecht MCM, Mathematical Modeling of Biofilms, 178pp., IWA Publishing, London, 2006 (Research Monograph)
  30. Wanner O, Eberl HJ, Morgenroth E, Noguera DR, Picioreanu C, Rittmann BE, van Loosdrecht MCM, Deciphering biofilms, Water 21, June, 2006
  31. Eberl HJ, Demaret L, A finite difference scheme for a degenerated diffusion equation arising in microbial ecology, El. J. Diff Equs. CS 15:77-95, 2007
  32. Efendiev MA, Eberl HJ, On positivity of solutions of semi-linear convection-diffusion-reaction systems, with applications in ecology and environmental engineering, RIMS Kyoto Kokyuroko, 1542:92-101, 2007
  33. Eberl HJ, Schraft H, A diffusion-reaction model of a mixed culture biofilm arising in food safety studies, in A. Deutsch et al (eds), Mathematical Modeling of Biological Systems, Vol. II, Birkhaeuser, 2007
  34. Khassehkhan H, Eberl HJ, Modeling and simulation of a bacterial biofilm that is controlled by pH and protonated lactic acids, Comp. Math. Meth. Med., 9(1):47-67, 2008
  35. Demaret L, Eberl H, Efendiev M, Lasser R. Analysis and Simulation of a Meso-scale Model of Diffusive Resistance of Bacterial Biofilms to Penetration of Antibiotics, Adv. Math. Sci. Appls, 18(1):269-304, 2008
  36. Fgaier H, Feher B, McKellar RC, Eberl HJ, Predictive Modeling of Siderphore Production by Pseudomonas fluorescens Under Iron Limitation, J. Theor. Biology, 251(2):348-362, 2008
  37. Eberl HJ, Muhammad N, Sudarsan R, Computing Intensive Simulations in Biofilm Modeling, Proc. 22nd Int. High Performance Computing Systems and Applications (HPCS2008), Quebec City, pp. 132-138, IEEE Proceedings, 2008
  38. Xu J, Sudarsan R, Darlington GA, Eberl HJ, A computational study of external shear forces in biofilm clusters, Proc 22nd Int. High Performance Computing Systems and Applications (HPCS2008), Quebec City, pp. 139-145, IEEE Proceedings, 2008
  39. Eberl HJ, Sudarsan R. Exposure of biofilms to slow flow fields: the convective contribution to growth and disinfection, J. Theoretical Biology, 253(4):788-807, 2008
  40. Efendiev MA, Zelik SV, Eberl HJ, Existence and longtime behavior of a biofilm model, Comm. Pure and Appl. Analysis, 8(2):509-531, 2009
  41. Demaret L, Eberl HJ, Efendiev MA, Maloszewski P, An extension of biobarrier formation and bio-clogging models that accounts for spatial spreading of bacteria in a saturated porous medium, Electr. J. Diff Eqs. CS 17:51-69, 2009
  42. Fgaier H, Eberl HJ, Parameter identification and quantitative comparison of differential equations that describe physiological adaptation of a bacterial population under iron limitation,Discrete and Continuous Dynamic Systems Supplement, pp 230-239, 2009
  43. Khassehkhan H, Hillen T, Eberl HJ, A nonlinear master equation for a degenerate diffusion model of biofilm growth, LNCS, 5544:735-744, 2009
  44. Khassehkhan H, Efendiev MA, Eberl HJ, Existence and simulations of solutions to a degenrate diffusion-reaction model of an amensalistic biofilm control system, Discrete and Continuous Dynamic Systems B, 12(2):371-388, 2009
  45. Eberl HJ, Collinson S, A modeling and simulation study of siderophore mediated antagonsim in dual-species biofilms, Theor. Biol. Med. Mod., 6:30, 2009
  46. Eberl HJ, Khassehkhan H, Demaret L, A mixed-culture model of a probiotic biofilm control system, Comp. Math. Meth. Med., 11(2):99-118, 2010
  47. Muhammad N, Eberl HJ. OpenMP Parallelization of a Mickens Time-Integration Scheme for a Mixed-Culture Biofilm Model and its Performance on Multi-core and Multi-processor Computers, LNCS, 5976:180-195, 2010
  48. Fgaier H, Eberl HJ. A Competition Model Between Pseudomonas fluorescens and Pathogens Via Iron Chelation, J. Theor. Biol., 263(4):566-578, 2010
  49. Semecheko A, Sudarsan R, Bester E, Wolfaardt G, Dony R, Oliver M, Eberl H. Influence of light attenuation on biofilm parameters evaluated from CLSM image data, Proc. 33rd Conf Can. Med and Biol. Eng. Soc, Vancouver, 2010
  50. Eberl HJ, Frederick M, Kevan P. The importance of brood maintenance terms in simple models of the honeybee – Varroa destructor – acute bee paralysis virus complex, El. J. Diff. Eq CS 19:85-98, 2010
  51. Frederick M, Kuttler C, Hense BA, Müller J, Eberl HJ. A mathematical model of quorum sensing in patchy biofilm communities with slow background flow, Can. Appl. Math. Quart, 18(3):267-298, 2010
  52. Eberl HJ, Sudarsan R. A brief note on ecological and mechanical views in biofilm modeling, Int. J. Biomath Biostats, 1(1):33-45, 2010
  53. Sonner S, Efendiev MA, Eberl HJ. On the Well-Posedness of a Mathematical Model of Quorum-Sensing in Patchy Biofilm Communities, Math. Meth. Appl. Sc., 34(13):1667-1684,  2011
  54. Fgaier H, Eberl HJ. Antagonistic control of microbial pathogens under iron limitations by siderophore producing bacteria in a chemostat setup, J. Theor. Biol., 273(1):103-114, 2011
  55. Semechko A, Sudarsan R, Bester E, Dony R, Eberl H. Influence of light attenuation on biofilm parameters evaluated from CLSM image data, J. Med. Biol. Eng., 31(2):135-144, 2011
  56. Frederick MR, Kuttler C, Hense BA, Eberl HJ. A mathematical model of quorum sensing regulated EPS production in biofilms, Theor. Biol. Med. Mod., 8:8, 2011
  57. Abbas F, Eberl HJ. Analytical flux approximation for the Monod boundary value problem, Appl. Math & Comp., 218(4):1484-1494, 2011
  58. Muhammad N, Eberl HJ. Model parameter uncertainties in a dual-species biofilm competition model affect ecological output parameters much stronger than morphological ones. Math. Biosci., 233(1):1-18, 2011
  59. Masic A, Eberl HJ. Reactor performance in a multi-species, multi-substrate mitrifying CSTR with floc forming suspended bacteria and biofilms, IWA Biofilm Conference 2011: Processes in Biofilms, Shanghai, Oct 2011
  60. Sudarsan R, Semechko A, Eberl HJ. Effect of Intensity Attenuation (IA) correction on biofilm parameters measured from CLSM image data, IWA Biofilm Conference 2011: Processes in Biofilms, Shanghai, Oct 2011
  61. Abbas F, Sudarsan R, Eberl HJ. Longtime behavior of one-dimensional biofilm models with shear dependent detachment rates, Math.Biosc. Eng., 9(2), 2012
  62. Masic A, Eberl HJ. Persistence in a single species CSTR model with suspended flocs and wall attached biofilms, Bull. Math. Biol., 74(5):1001-1026, 2012
  63. Sudarsan R, Thompson CG, Kevan PG, Eberl HJ. Flow currents and ventilation in Langstroth beehives due to brood thermoregulation efforts of honeybees, J. Theor. Biol., 295:168-193, 2012
  64. Abbas F, Eberl HJ. Investigation of the role of mesoscale detachment rate expressions in a macroscale model of a porous medium biofilm reactor, Int. J. Biomath and Biostats, 2(1):123-143, 2013
  65. Ratti V, Kevan PG, Eberl HJ. A mathematical model for population dynamics in honeybee colonies infested with Varroa destructor and the Acute Bee Paralysis Virus, Can. Appl. Math. Quart.,21(1):63-93, 2013
  66. Eberl HJ, Efendiev MA, Wrzosek D, Zhigun A. Analysis of a degenerate biofilm model with a nutrient taxis term, DCDS-A, 34(1):99-119, 2014
  67. Fgaier H, Kalmokoff M, Ellis T, Eberl HJ. An allelopathy based model for the Listeria overgrowth phenomenon, Math. Biosc., 247:13-26, 2014
  68. Eberl HJ, Kevan PG, Ratti V. Infectious disease modeling for honeybee colonies, in J Devillers (ed), In Silico Bees, CRC Press, 87-108, 2014
  69. Jalbert E, Eberl HJ. Numerical computation of sharp traveling wave solutions of a degenerate diffusion-reaction equation arising in biofilm modeling, Comm. Nonlin. Sci. Num. Simul., 19(7):2181-2190, 2014
  70. Masic A, Eberl HJ. A modeling and simulation study of the role of suspended microbial populations in nitrification in a biofilm reactor, Bull. Math. Biol., 76(1):27-58, 2014
  71. Eberl HJ, Sudarsan R. OpenACC Parallelisation For Diffusion Problems,Applied To Temperature Distribution On A Honeycomb Around the Bee Brood: A Worked Example Using BiCGSTAB, LNCS 8385:311-321, 2014
  72. Rahman KA, Eberl HJ. Numerical treatment of a cross-diffusion model of biofilm exposure to antimicrobials, LNCS, 8384:134-144, 2014
  73. Moorthy AS, Eberl HJ. Assessing the influence of reactor system design requirements on model colon fermentation performance, J. Biosc. Bioeng., 117(4):478–484, 2014
  74. Masic A, Eberl HJ. On optimization of substrate removal in a bioreactor with wall attached and suspended bacteria, Math.Biosc.Eng., 11(5):1139-1166, 2014
  75. Sonner S, Efendiev MA, Eberl HJ. On the Well-Posedness of Mathematical Models for Multicomponent Biofilms, Math.Meth.Appl.Sc, 38(17):3753-3775, 2015
  76. Efendiev MA, Otani M, Eberl HJ. A coupled PDE/ODE model of mitochondrial swelling: Large-time behavior of the homogeneous Dirichlet Problem, J. Coupled Sys. Multisc. Dyn., 3(2):122-134, 2015
  77. Dumitrache A, Eberl HJ, Allen DG, Wolfaardt GM. Mathematical Modeling to Validate On-line CO2 Measurements As A Metric For Cellulolytic Biofilm Activity in Continuous-flow Bioreactors, Biochem Eng J, 101:55-67, 2015
  78. Ratti V, Kevan PG, Eberl HJ.A Mathematical Model of the Honeybee-Varroa destructor-Acute Bee Paralysis Virus Cohmplex with Seasonal Effects, Bull. Math. Biol., 77(8):1493-1520, 2015
  79. Emerenini B, Hense BA, Kuttler C, Eberl HJ. A Mathematical Model of Quorum Sensing Induced Biofilm Detachment, PlosOne,10(7): e0132385, 2015
  80. Rahman KA, Sudarsan R, Eberl HJ. A Mixed Culture Biofilm Model with Cross-Diffusion, Bull.Math.Biol. 77(11):2086-2124, 2015
  81. Moorthy AS, Brooks SPJ, Kalmokoff M, Eberl HJ. A spatially continuous model of carbohydrate digestion and transport processes in the colon, PlosOne, 10(12): e0145309, 2015
  82. Rahman K, Sonner S, Eberl HJ.Derivation of a multi-species cross-diffusion model from a lattice differential equation and positivity of its solutions. Acta Physica Polonica Series B: 9 (1), 2016
  83. Masic A, Eberl HJ. A chemostat model with wall attachment: The effect of biofilm detachment rates on predicted reactor performance. Belair et al (eds) Mathematical and Computational Approaches in Advancing Modern Science and Engineering, Springer, 2016
  84. Ratti V, Kevan PG, Eberl HJ.A discrete-continuous modeling framework to study the role of swarming in a honeybee-Varroa destructor-virus system. Belair et al (eds) Mathematical and Computational Approaches in Advancing Modern Science and Engineering, Springer, 2016
  85. Khassehkhan H, Eberl HJ. A computational study of amensalistic control of Listeria monocytogenes by Lactococcus lactis under nutrient rich conditions. Foods, 5(3):61, 2016
  86. Sudarsan R, Gosh S, Stockie JM, Eberl HJ. Simulating biofilm deformation and detachment with the immersed boundary method, Comm. Comp. Phys. 19 (3), 682-732, 2016
  87. Emerenini BO, Sonner S, Eberl HJ. Mathematical Analysis of a Quorum Sensing Induced Biofilm Dispersal Model, Math. Biosc. Eng., 14(3):625-653, 2017
  88. Eberl HJ, Jalbert EM, Dumitrache A, Wolfaardt GM. A spatially explicit model of inverse colony formation of cellulolytic biofilms, Biochem. Eng. J., 122, 141–151, 2017
  89. Efendiev M, Ôtani M, Eberl HJ. Mathematical analysis of an in vivo model of mitochondrial swelling, DCDS-A, 37(7), 2017
  90. Petric A, Guzman-Novoa E, Eberl HJ. A Mathematical Model for the Interplay of Nosema Infection and Forager Losses in Honey Bee Colonies, J.Biol.Dyn. 11(S2):348-278, 2017
  91. Ratti V, Kevan PG, Eberl HJ. A mathematical model of forager loss in honeybee colonies infested with Varroa destructor and the Acute Bee Paralysis Virus, Bull. Math. Biol., 79(6):1218-1253, 2017
  92. Moorthy AS, Eberl HJ. compuGUT: an in silico platform for simulating intestinal fermentation, SoftwareX, 6:237-242, 2017
  93. Ghasemi M, Eberl HJ. Extension of a regularization based time-adaptive numerical method for a degenerate diffusion-reaction biofilm growth model to systems involving quorum sensing, Procedia Comp. Sci., 108:1893–1902, 2017
  94. Ghasemi M, Eberl HJ. Time adaptive numerical solution of a highly degenerate diffusion-reaction biofilm model based on regularisation, J. Sci. Comp. 74: 1060-1090, 2018
  95. Ghasemi M, Sonner S, Eberl HJ.  Time adaptive numerical solution of a highly nonlinear degenerate cross-diffusion system arising in multi-species biolm modeling. Europ. J. Appl. Math. 29(6):135-161, 2018
  96. Ghasemi M, Hense BA, Kuttler C, Eberl HJ. Simulation based exploration of quorum sensing triggered resistance of biofilms to antibiotics. Bull. Math. Biol. 80(7): 1736-1775, 2018
  97. Ali MA, Eberl HJ, Sudarsan R. Numerical solution of a degenerate, diffusion reaction based biofilm growth model on structured non-orthogonal grids, Comm. Comp. Phys., 24(5):695-741, 2018
  98. Ali MA, Eberl HJ, Sudarsan R.  A Simulation Study of the Effect of Meso-Scopic Sinusoidal Surface Roughness on Biofilm Growth, in:  M Kilgour et al (eds), Recent Advances in Mathematical and Statistical Methods – Proc AMMCS 2017, Springer, pp. 315 -326, 2018
  99. Muhammad N, Eberl HJ. A Simple Model of Between-Hive Transmission of Nosemosis, in:  M Kilgour et al (eds), Recent Advances in Mathematical and Statistical Methods – Proc AMMCS 2017, Springer, pp. 385 -396, 2018
  100. Coffey M, Eberl HJ, Greer AL. Model Based Economic Assessment of Avian Influenza Vaccination in an All-in/All-out Housing System, in:  M Kilgour et al (eds), Recent Advances in Mathematical and Statistical Methods – Proc AMMCS 2017, Springer, pp. 419 -430, 2018
  101. Gaebler HJ, Eberl HJ. First Order Versus Monod Kinetics in Numerical Simulation of Biofilms in Porous Media, in:  M Kilgour et al (eds), Recent Advances in Mathematical and Statistical Methods – Proc AMMCS 2017, Springer  pp 351 -362, 2018
  102. Gaebler HJ, Eberl HJ.  A simple model of biofilm growth in a porous medium that accounts for detachment and attachment of suspended biomass and their contribution to substrate degradation. Europ. J. Appl. Math. 29(6):1110-1140, 2018
  103. Efendiev MA, Otani M, Eberl HJ. Analysis of a PDE model of the swelling of mitochondria accounting for spatial movement, Math. Meth. Appl. Sc.41(5): 2162-2177, 2018
  104. Rohanizadegan Y, Sonner S, Eberl HJ. Discrete attachment to a cellulolytic biofilm modeled by an Itô stochastic differential equation, Math. Biosc. Eng. 17(3):2237-2271, 2020
  105. Efendiev MA, Otani M, Eberl HJ. Mathematical analysis of a PDE-ODE coupled model of mitochondrial swelling with degenerate calcium ion diffusion. SIAM J. Math. Analysis 52 (1):543-569, 2020
  106. Muhammad N, Eberl HJ. Two routes of transmission for Nosema infections in a honeybee population model with polyethism and time-periodic parameters can lead to drastically different qualitative model behaviour. Comm. Nonline. Sc. Num. Sim., 84:105207, 2020
  107. Ogilvie LM, Egett BA, Huber JS, Platt MJ, Eberl HJ, Lutchmedial S,Brunt KR, Simpson JA. Hemodynamic assessment of diastolic function for experimental models, Am J Physiol Heart Circ Physiol. 318(5):H1139-H115, 2020
  108. Gaebler H, Eberl HJ. Thermodynamic inhibition in chemostat models, Bull. Math. Biol., 82(6):72, 2020
  109. Jegatheesan T, Eberl HJ. Modelling the Effects of Antibiotics on Gut Flora Using a Nonlinear Compartment Model with Uncertain Parameters, LNCS 12137:399-412, 2020
  110. Zarva P, Eberl HJ. Simulation Based Exploration of Bacterial Cross Talk Between Spatially Separated Colonies in a Multispecies Biofilm Community, LNCS 12143:228-241 2020
  111. Eberl HJ, Wade MJ. Challenges and perspectives in reactor scale modeling of biofilm processes, in: M Simoes et al (eds), Recent Trends in Biofilm Science and Technology, Elsevier, pp.359-383, 2020
  112. Comper JR, Eberl HJ. Mathematical Modeling of Population and Food Storage Dynamics in a Honey Bee Colony Infected with Nosema ceranae, Heliyon, 6 (8), e04599, 2020
  113. Ghasemi M, Chang S, Eberl HJ, Sivaloganathan S. Simulation of composition and mass transfer behaviour of a membrane biofilm reactor using a two dimensional multi-species counter-diffusion model, J. Membr. Sci. 618, 118636, 2021,
  114. Gaebler HJ, Hughes JM, Eberl HJ. Thermodynamic Inhibition in a Biofilm Reactor with Suspended Bacteria, Bull. Math. Biol. 83(10), 2021
  115. Gaebler HJ, Eberl HJ. Multiscale Modeling of Uranium Bioreduction in Porous Media by One-Dimensional Biofilms, Bull. Math. Biol. 83(105), 2021
  116. Eberl HJ, Gaebler HJ, Grohn YT. A brief note on a multistrain SIR model with complete cross-protection and nonlinear force of infection, Comm. Nonlin.Sci Num. Sim. 103, 106001, 2021
  117. Emerenini BO, Eberl, HJ. Reactor scale modeling of quorum sensing induced biofilm dispersal, Appl. Math. Comp., 418, 126792, 2022
  118. Eberl HJ, Muhammad N. Mathematical modelling of between hive transmission of Nosemosis by drifting, Comm. Nonlin.Sci Num. Sim. 114, 106636, 2022
  119. Ghasemi M, Freingruber V, Kuttler C. Eberl, HJ. A mathematical model of quorum quenching in biofilm colonies and its potential role as an adjuvant for antibiotic treatment, Math. Appl. Sci. Eng, online first, 2022
  120. Hughes JM, Sonner S, Eberl HJ. A mathematical model of discrete attachment to a cellulolytic biofilm using random DEs , Math. Biosc. Eng. 19(7):6582-6619, 2022
  121. Messoud A. Efendiev, Mitsuharu Ôtani, Hermann J. Eberl. “Long time behavior of a parabolic p-Laplacian equation coupled to a compartmental ODE system with an induction threshold phenomenon”, J. Diff. Equs.339:602-636, 2022
  122. George E. Kapellos, Hermann J. Eberl, Nicolas Kalogerakis, Patrick S. Doyle and Christakis A. Paraskeva, Impact of Microbial Uptake on the Nutrient Plume around Marine Organic Particles: high-resolution numerical analysis, Microorganisms, 10(10):2020, 2022
  123. Allen C, Mazanko A, Abdehagh N, Eberl HJ, A New ODE-Based Julia Implementation of the Anaerobic Digestion Model No. 1 Greatly Outperforms Existing DAE-Based Java and Python Implementations, Processes, 11(7):1899, 2023
  124. K. Mitra, J.M. Hughes, S. Sonner, H.J. Eberl, J.D. Dockery, “Travelling waves in a PDE–ODE coupled model of cellulolytic biofilms with nonlinear diffusion”, Journal of Dynamics and Differential Equations, https://doi.org/10.1007/s10884-022-10240-4, 2023
  125. Jegatheesan T, Moorthy AS, Eberl HJ. Enzymatic hydrolysis of complex carbohydrates and the mucus in a mathematical model of a gut reactor, Processes , 11(2):370, 2023
  126. HJ Eberl, A Simple NSFD Inspired Method for Monod Kinetics With Small Half Saturation Constants in the Chemostat Setting, in Abba Gumel (ed.) , Mathematical and Computational Modeling of Phenomena Arising in Population Biology and Nonlinear Oscillations: In honour of the 80th birthday of Ronald E. Mickens, AMS Contemporary Mathematics Book Series, accepted
  127. Khodabakhshi-Soureshjani M, Eberl HJ, Zytner RG. Three-Dimensional Model for Bioventing: Mathematical Solution, Calibration and Validation, Math. & Comp. Appls, 29:16, 2024